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Brief Derivation of the LMTD

To design or predict the performance of a heat exchanger, the LMTD and the effectiveness-NTU
methods are both useful. I’ll first touch on the LMTD method, to give you an overview of its derivation and
meaning.

One circumstance in designing or predicting the performance of a hxgr is the need to relate the heat
transfer rate to quantities like the inlet and outlet temperatures, the U and the A.

Examine an exchange of heat between two streams, separated by a thin sheet of area A, as seen in the next
Figure. Let’s write the expressions for mass conservation and energy conservation, and see what assumptions
we need to make. Also need to determine the control volume.

Assume:

• Uniform

• Steady flow

• All the heat that comes from the hot stream goes into the cold stream (the hxgr is insulated from its
surroundings)

• No phase change

• Constant specific heats

• Negligible Kinetic and potential energy

• U is constant (or nearly so)

Mass conservation:

∂

∂t

∫
CV

ρdV— +
∫

CS

ρ~V · n̂dA = 0

∫
CS

ρ~V · n̂dA = 0

ṁc = ρc,oVoAo = ρc,iViAi

Energy conservation:

∂

∂t

∫
CV

ρedV— +
∫

CS

ρe~V · n̂dA = Q̇− Ẇ ∗

∫
CS

ρ(e + Pv)~V · n̂dA = 0

Q̇ = ρc,ohc,oVoAo − ρc,ihc,iViAi

Q̇ = ṁc(hc,o − hc,i)

1

Laura
Rectangle



Q̇ = ṁh(hh,i − hh,o)

So with the specific heat assumption that we made (and treating the fluids as incompressible), we can
write

Q̇ = ṁcp∆T

We’ll also define Ci = ṁicp,i as the heat capacity rate. We want to relate the inlet and outlet temperatures,
the U, and the A, to the rate of heat transferred, and we can do this as:

Q̇ = UA∆Tmean

.
We now need to find what this mean temperature is. To do this, we’ll look at a differential area of the

heat exchanger where a differential amount of heat is transferred.
Using this equation to examine the hot and cold streams separately yields:

δQ̇ = −Ch dTh ; Ch = (ṁ cp)h (1)

δQ̇ = ±Cc dTc ; Cc = (ṁ cp)c (2)

where ± or ∓ appears, the top sign designates parallel-flow, and the bottom sign designates counterflow.
A heat exchanger relationship for expressing the heat transfer between fluids over a differential area is:

δQ̇ = U (Th − Tc) dA , or (3)

Th − Tc =
δQ̇

U dA
(4)

Rearranging equations 1 and 2 yields:

dTh = −δQ̇

Ch
and dTc = ±δQ̇

Cc
; so

dTh − dTc = d(Th − Tc) = δQ̇ (− 1
Ch

∓ 1
Cc

) (5)

Dividing the above equation by equation 4 results in:

d(Th − Tc)
Th − Tc

= U (− 1
Ch

∓ 1
Cc

) dA (6)

Equation 6 can then be integrated over the heat exchanger:
Parallel-flow:

ln[
Th2 − Tc2

Th1 − Tc1

] = UA (− 1
Ch

− 1
Cc

)

Counterflow:
ln[

Th2 − Tc1

Th1 − Tc2

] = UA (− 1
Ch

+
1
Cc

) (7)

Replacing the specific heats of equation 7 with those found before yields
Parallel-flow:

ln[
Th2 − Tc2

Th1 − Tc1

] =
UA

Q̇
[(Th2 − Th1) + (Tc1 − Tc2)]

Counterflow:
ln[

Th2 − Tc1

Th1 − Tc2

] =
UA

Q̇
[(Th2 − Th1) + (Tc2 − Tc1)]
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Q̇ = UA
∆T1 −∆T2

ln[∆T1
∆T2

]

∆TLogMean =
∆T1 −∆T2

ln[∆T1
∆T2

]
(8)

This equation is valid only if Cc 6= Ch; otherwise, ∆T1 = ∆T2 and a denominator of zero results.
Example 11.1 from Incrop. and DeW. is a good example that incorporates the convection coefficient and

the LMTD.

Effectiveness-NTU method

If only the inlet temperatures (and not the outlet temperatures) are known, the LMTD method requires
iteration. In these cases (and in some others), the effectiveness-NTU method should be used instead ( ε −
NTU ). REMEMBER: Q̇ = q.

We want to show that ε = ε(NTU, Cmin

Cmax
) We’ll first show that this is true for parallel-flow, where

Ch = Cmin.
So, what is q equal to, in terms of the temperatures and heat capacity rate of the hot fluid?

q = Ch(Thi − Tho)

ε =
Ch(Thi − Tho)

Cmin(Thi − Tci)
=

Thi − Tho

Thi − Tci

Cr =
Cmin

Cmax
=

Ch

Cc
=

Tco − Tci

Thi − Tho

Now, returning to the derivation of the LMTD, we know that for a parallel-flow hxgr,

ln(
∆T2

∆T1
) = −UA(

1
Ch

+
1
Cc

) = −UA

Ch
(1 +

Ch

Cc
) = − UA

Cmin
(1 + Cr)

ln(
Tho − Tco

Thi − Tci
) = −NTU(1 + Cr)

and
Tho − Tco

Thi − Tci
= exp(−NTU(1 + Cr))

Now we have three expressions for temperature that relate to ε, NTU , and Cr, and we can eliminate
temperature altogether to find ε only in terms of NTU and Cr. The derivation is as follows:

Tco = Cr(Thi − Tho) + Tci

Tho − Tco

Thi − Tci
=

(Tho − Thi) + (Thi − Tco)
Thi − Tci

Tho − Tco

Thi − Tci
=

Tho − Thi

Thi − Tci
+

Thi − Tci

Thi − Tci
− Cr

Thi − Tho

Thi − Tci

Tho − Tco

Thi − Tci
= (−ε) + (1)− Cr(ε) = exp(−NTU(1 + Cr))

and

ε =
1− exp(−NTU(1 + Cr))

1 + Cr

We could also go through and do the same derivation for Cc = Cmin. You’ll find more expressions for ε
and NTU in any heat transfer textbook.

3


